If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2-17x+2=0
a = 35; b = -17; c = +2;
Δ = b2-4ac
Δ = -172-4·35·2
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-3}{2*35}=\frac{14}{70} =1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+3}{2*35}=\frac{20}{70} =2/7 $
| 14*(4x-1)=-1/5-2/5 | | 3y+10^4=2y | | 3(2x-5)+7(5x-3)-8(4x-7)+5(12-10x)=48x-24 | | 8(x+3)-2=46 | | 7y-6-3y+5=0 | | -3+x/21=-1 | | 1/2(2x+1)=-1/7-5/7 | | L=45+x | | 2b-11+5b+15+8b-37=-4b+10-17b-12+18b-40 | | 11n-8=5n+16 | | x+32=4x-34 | | -17x+3=-(20x)+7 | | 183/4w+6=9-1/4 | | -21+3y=-21 | | A=45+x^2 | | 4x+8+5+6=55 | | X^4*2x-1=0 | | X^4x(2x-1)=0 | | 5x+6+4x+8=55 | | 1/9x^2+2/3x+1=0 | | 41x-6=180 | | 5x+64x+8=55 | | X^4*(2x-1)=0 | | 3/5*x=1 | | 15-11(4x+7)=21+9(2x-9 | | 5x+64x+8=555 | | 20x+21x-6=180 | | x-5.6=3.47 | | (11x)+7=(10x)+10 | | 9x+16=4x+15 | | 7x2=8x+11 | | x^2+(x+1)^2+(x+2)^2+(x+3)^2=(x+4)42 |